Chaotic dynamics and synchronization of fractional order PMSM ‎system

نویسندگان

  • Hossein Kheiri Faculty of Mathematical sciences, University of Tabriz, tabriz, Iran.
  • Mohammad Javidi Faculty of Mathematical sciences, University of Tabriz, tabriz, Iran.
  • Vajiheh Vafaei Faculty of Mathematical sciences, University of Tabriz, tabriz, Iran.
چکیده مقاله:

‎In this paper, we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (PMSM) system. The necessary condition for the existence of chaos in the fractional-order PMSM system is deduced and an active controller is developed based on the stability theory for fractional systems. The presented control scheme  is simple and flexible, and it is suitable both for design and for implementation in practice. Simulation is carried out to verify that the obtained scheme is efficient and robust for controlling the fractional-order PMSM system.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

chaotic dynamics and synchronization of fractional order pmsm ‎system

‎in this paper, we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (pmsm) system. the necessary condition for the existence of chaos in the fractional-order pmsm system is deduced and an active controller is developed based on the stability theory for fractional systems. the presented control scheme  is simple and flexible, and it is suitable both fo...

متن کامل

Finite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems

Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...

متن کامل

Adaptive control and synchronization of a fractional-order chaotic system

Abstract. In this paper, the chaotic dynamics of a three-dimensional fractional-order chaotic system is investigated. The lowest order for exhibiting chaos in the fractional-order system is obtained. Adaptive schemes are proposed for control and synchronization of the fractional-order chaotic system based on the stability theory of fractional-order dynamic systems. The presented schemes, which ...

متن کامل

Synchronization Between a Fractional Order Chaotic System and an Integer Order Chaotic System

This paper deals with synchronization between a fractional order Coullet chaotic system and an integer order Rabinovich-Fabrikant chaotic system by using tracking control and stability theory of fractional order system. An effective controller is designed to synchronize these two systems. Numerical simulations have been done by using Mathematica and Matlab both. Numerical solutions via Grünwald...

متن کامل

Chaotic incommensurate fractional order Rössler system: active control and synchronization

* Correspondence: majd@modares. ac.ir Intelligent Control Systems Laboratory, School of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran Full list of author information is available at the end of the article, Abstract In this article, we present an active control methodology for controlling the chaotic behavior of a fractional order version of Rössler system. The ma...

متن کامل

Control and Synchronization of the Fractional-Order Lorenz Chaotic System via Fractional-Order Derivative

The unstable equilibrium points of the fractional-order Lorenz chaotic system can be controlled via fractional-order derivative, and chaos synchronization for the fractional-order Lorenz chaotic system can be achieved via fractional-order derivative. The control and synchronization technique, based on stability theory of fractional-order systems, is simple and theoretically rigorous. The numeri...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 02  شماره 2

صفحات  83- 90

تاریخ انتشار 2015-12-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023